Aufgaben -?? III A.1-

AUFGABEN ZU III A: GRUNDLAGEN

Aufgabe 1:

Nachfolgende Fragen beziehen sich auf Wasser:

- a) Wie hoch ist der Sättigungsdampfdruck bei Umgebungstemperatur?
- b) Welche Temperatur liefert bei Umgebungsdruck den Sättigungsdampfdruck?
- c) Wie verhält sich die Siedetemperatur des Wassers, wenn der Druck im Behälter erhöht wird?
- d) Wie verhält sich die Siedetemperatur von Wasser auf einem Berg?

Aufgabe 2:

Nachfolgend Stoffwerte für das ideale Zweistoffgemisch Benzol/Toluol.

Τ	$p_{os1}(Benzol)$	p _{os2} (Tolu	ıol)
In °C	in kPa	in kPa	
80	10	01	39
85	1	18	46
90	1;	36	54
95	1	57	64
100	18	80	74
105	20	06	86
110	23	35	100
110,5	2:	38	101

Abb.: Siededampfdrücke von Benzol und Toluol (Quelle: Schwister/Verfahrenstechnik)

- a) Zeichne die Dampfdruckkurve von Benzol.
- b) Betrachte eine Lösung mit 40% Benzol bei 95°C.
 - b1) Wie groß (in bar) sind die Partialdrücke der beiden Komponenten?
 - b2) Wie groß ist der Gesamtdampfdruck?
 - b3) Berechne die Zusammensetzung des Gemischdampfes?

Aufgaben -?? III A.2-

Aufgabe 3:

In nachfolgendem Diagramm sind die Dampfdruckkurven einiger Stoffe dargestellt.

a) Zeichne das Druckdiagramm (mit Siedelinie und Taulinie) für das nahezu ideale Zweistoffgemisch Diethylether-Ethanol bei 30°C. Die Stoffdaten sind dem Diagramm zu entnehmen.

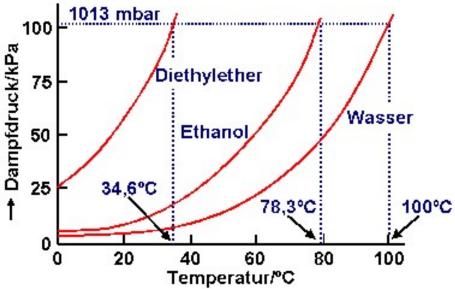


Abb.: Dampfdruckkurven (Quelle: Uni Paderborn)

b) Markiere im Druckdiagramm die Bereiche der flüssigen bzw. gasförmigen Phase.

Aufgabe 4:

Das nahezu ideale Zweistoffgemisch Benzol-Toluol hat bei einem Stoffmengenanteil von 72% Benzol eine Siedetemperatur von 85°C.

- a) Wie groß sind die jeweiligen Partialdrücke der Stoffe?
- b) Wie groß ist der Gesamtdruck (Gesamt-Dampfdruck) über der Lösung?
- c) Wie ist die Zusammensetzung des Dampfes?

Die Stoffdaten sind nachfolgendem Diagramm zu entnehmen.

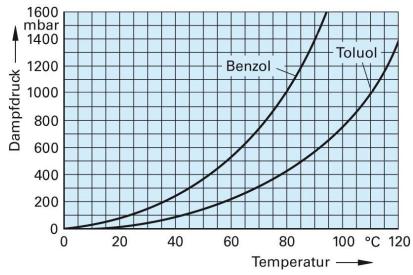


Abb.: Dampfdruckkurven (Quelle: Chemietechnik, überarbeitet)

Aufgaben -?? III A.3-

Aufgabe 5:

In einem offenen Reaktor siedet das nahezu ideale Gemisch aus Propanol-2 und 2-Methylpropanol-1 bei 100°C.

Die Dampfdrücke der beiden reinen Komponenten betragen bei dieser Temperatur 1,89 bar beziehungsweise 0,75 bar.

Die Siedetemperaturen der reinen Komponenten betragen 88,3°C bzw. 108,5°C.

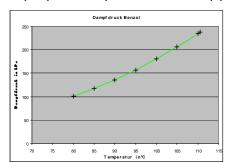
- a) Berechne die Mischungszusammensetzung der Lösung.
- b) Überprüfe den Gesamtdruck über der Lösung indem du zunächst die Partialdrücke berechnest?
- c) Berechne die Zusammensetzung des Dampfes.
- d) Zeichne das Siedediagramm der Mischung mit den bekannten Messwerten.
- e) Markiere im Siedediagramm die Bereiche der flüssigen bzw. gasförmigen Phase.

Aufgabe 6:

Nachfolgend Stoffwerte für das ideale Zweistoffgemisch Benzol/Toluol.

t	x ₁ (Benzol)	$x_2(Toluol)$	y₁(Benzol)	y ₂ (Toluol)
in °C	In %/100	in %/100	in %/100	in %/100
80	1,00	0,00	1,00	0,00
85	0,76	0,24	0,89	0,11
90	0,57	0,43	0,77	0,23
95	0,40	0,60	0,62	0,38
100	0,25	0,75	0,45	0,55
105	0,13	0,87	0,27	0,73
110	0,01	0,99	0,02	0,98
110,5	0,00	1,00	0,00	1,00

Abb.: Stoffmengenanteile von Benzol/Toluol im Gleichgewicht (Quelle: Schwister/Verfahrenstechnik)

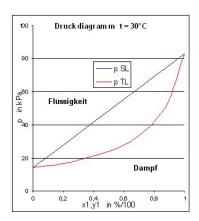

- a) Zeichne das Siedediagramm (mit Siedelinie und Taulinie) für das Zweistoffgemisch.
- b) Ermittle das Gleichgewichtsdiagramm aus dem Siedediagramm.
- c) Überprüfe den Verlauf des Gleichgewichtsdiagramms mit den Zahlenwerten aus der Tabelle.

Aufgaben -?? III A.4-

Ergebnisse:

Aufgabe 1: 20°C: pos(Wasser) = 0,02 bar; b) p = 1 bar, t=100 °C; c) steigt; d) kleiner

Aufgabe 2: a)



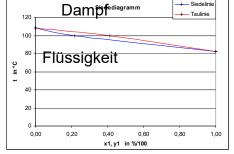
b1) $p_1 = 0.628$ bar; 0.384 bar

b2) 1,012 bar

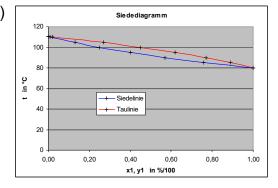
b3) $y_1 = 0.62$; $y_2 = 0.38$

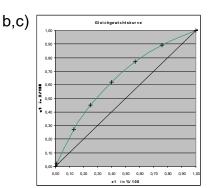
Aufgabe 3:

Aufgabe 4: a) p_1 = 864 mbar, p_2 = 140 mbar b) 1004 mbar c) y_1 = 0,86; y_2 = 0,14


Aufgabe 5: a) $x_1 = 0.219$; $x_2 = 0.781$

d,e)


al b) 1004 filbal c) y = 0,00, j


b) 1bar

c) $y_1 = 0.414$; $y_2 = 0.586$

Aufgabe 6: a)

